[Company Logo Image]

Home Up Feedback Contents Search Reprints

Model List 

 

 

Up

Workshop Model List
Workshop Parameter List

Workshop Model List

Model Name

People

General Goals and Intent

Modeled Processes

Dynamics

Geometry

Range of Compositions

Volatiles

References

Bubbledrive-1

Alex Proussevitch, Dork Sahagian

1. Full eruption cycle

2. Parameter feedback

3. Magma vesiculation

4. Discharge dynamics

1. Bubble growth

2. Conduit flow

3. Foam fragmentation

4. Parameter feedback

Non-steady state, triggers-(decompression; recharge from below)

Cylindrical and axi-symmetrical rotational bodies (e.g. vent funnel, shallow magma chamber, connecting conduits)

From basaltic to rhyolitic melts

H2O

Proussevitch, Sahagian, 1998, JGR

Sahagian, Proussevitch, AGU Abs., 2000& JGR

More refs...

WK-1

 

Andy Woods

T. Koyaguchi

Transition between explosive to effusive

1. Effect of degassing from conduit

Steady

Cylindrical

Basalt to dacite

H2O

Woods and Koyaguchi 1994 Nature

More refs...

 

YK-1

 

S. Yoshida

T. Koyaguchi

Transition between explosive to effusive

1. Effect of relative velocity

2. Introducing transitional flow regime between bubbly and particle-disperse flows

Steady

Cylindrical

Basalt to dacite

H2O

w/o regorous exsolution law

Yoshida and Koyaguchi 1999 JVGR

More refs...

 

Conflow

 

Mastin, Larry G.

Ghiorso, Mark S.

1. 1-D conduit properties

2. steady-state eruption dynamics

3. vesiculation processes

4. effects of rheology

1. Bubble growth

2. Fragmentation

3. Adiabatic thermal effects

4.

Steady-state

1-D conduit, cylindrical or with geometry adjusted to a given pressure profile.

Full range (basaltic to rhyolitic)

H2O

Mastin and Ghiorso, 2000

Mastin, 2002

More refs...

Degass

 

 

Matthias Hort

James Gardner

1. Degassing of pumice fragments

2. constrain volatile content in matrix glass

3. parameter feedback

1. Volatile degassing

2. Transport in an eruption column

 

1. Steady state eruption column model

2. Temperature and concentration dependent species diffusion

3. Dissoziation of H2O during diffusion

1. 1D eruption column model

2. Spherical pumice

3. Sperical bubbles

Higher silica, basaltic difficult due to low viscosity

H2O

Hort and Gardner JGR, 2000, 25981-26001

More Hort refs...

More Gardner refs...

CFLOW

 

 

Hélène Massol,

Claude Jaupart

1-Gas pressure field in the conduit (2-D) 2-Overpressure in gas bubbles

1-Compressible and viscous flow dynamics 2-(2-D): Height and radius

Steady state

Magma = homogeneous

Compressible mixture

 

 

Cylindrical and axi-symmetrical rotational bodies

Fully 2-D

From andesitic to rhyolitic

H20

Massol and Jaupart, 1999, EPSL; Massol,Jaupart and Pepper,2001,JGR
More Massol refs...
More Jaupart refs...

NUCLASCENT

 

 

Hélène Massol,

Takehiro Koyaguchi

1-To couple the microscopic (bubble sizes and density) and macro-scopic parameters (mass flux)

2-To progress in the under-standing of fragmentation mechanism

1-Bubble growth

2-Nucleation

3-Various Fragmentation criteria

4-Conduit flow

 

Steady state

Gas pressure≠

Liquid Pressure ≠ Dynamic pressure

 

 

Cylindrical

1-D

From andesitic to rhyolitic

H20

Massol and Koyaguchi, 2001, EOS, Fall

Meeting Abstracts

More Massol refs...

More Koyaguchi refs...

LBflow

 

 

Ed Llewellin, Heidy Mader

3D flow of multiphase material (magma + bubbles + crystals??) in arbitrary geometry

1. Microscopic bubble deformation

2. Shear and timescale dependent viscosity

3. Macrosopic flow

Steady and unsteady – driven by imposed pressure drop

Arbitrary

Arbitrary

 

New model in preparation.

More refs...

Conduit4

 

 

Paolo Papale

Dynamics of magma ascent and fragmentation in explosive eruptions

1. Conduit flow

2. Gas-liquid chemical equilibrium

3. Dynamic criteria for foam fragmentation

4. Choking of multiphase mixture

5. Gas bubble entrapment in pumice

5. Parameter feedback

Steady state, multiphase (gas/dense phase) non-equilibrium, bubbly-flow and gas-particle/droplet flow regimes, composition-dependent properties

1-D conduits and fissures

Any composition in terms of 10 major oxides, N crystal species, and volatiles

H2O, CO2, S (S2- and SO42- in the melt, SO2 and H2S in the gas phase)

1. Papale 1998, From Magma to Tephra – Elsevier;
2. Papale 1999, Am. Mineral.;
3. Papale 1999, Nature;
4. Papale 2001, JGR.

More refs...

ATHAM

 

Hans Graf

Michael Herzog

Christiane Textor

Joerg Trentmann

evolution of high energy plumes (fire, volcanoes, convective clouds) in the atmosphere
on the mesoscale ã

1. turbulence closure scheme

2.microphysics of water and ice included, feedback on dynamics considered

3.ash aggregation

4.gas chemistry

 

Non-steady state,

Non-hydrostatic,

Sound waves included

Cylindrical=axi-symmetrical + cartesian in 2 and 3 dimensions

variable grid dimensions

focusing grid

open boundaries

ATHAM is an Atmospheric model!

Composition of erupting mixture: arbitrary number of tracers (solid, liquid, gaseous).

H2O, SO2, H2S,

HCl, HBr, inert gas, CO2

Composition variable

Oberhuber, J. M., M. Herzog, H.-F. Graf, and K. Schwanke 1998

Graf, H.-F., M. Herzog, J. M. Oberhuber, C. Textor 1999

Herzog, M., H.-F. Graf, Ch. Textor, and J. M. Oberhuber 1998

Textor, C., H.-F. Graf, M.Herzog, and J.M. Oberhuber

Textor, C., H.-F. Graf, M.Herzog, and J.M. Oberhuber

J. Trentmann and M. O. Andreae, H.-F. Graf, P. V. Hobbs, R. D. Ottmar, T. Trautmann

Magma-2D

 

 

J. I. Ramos

1. Full eruption cycle

2. Melting of walls

3. Discharge dynamics

4. Magma solidification

1. Conduit model

2. Magma solidification and remelting

3. Magma rheology

4. Solid-liquid mixtures

Unsteady/steady

Two-dimensional

Homogeneous flow

Mushy region

Binary materials

Planar and axisymmetric conduits

Time-dependent or steady flows

Basaltic and andesitic magmas.

 

 

 

Ramos, Acta Vulcanologica 1997.

Ramos, Int. J. Num. Meth. Fluids, 1995, 1999

More refs...

CFDLIBv02.0

Ed Gaffney, Buck Kashiwa

Magma interaction with underground structures at proposed Yucca Mountain Nuclear Waste Repository

1. Gas exsolution, phase separation,

2. Turbulent or laminar flow

3. Interaction with obstacles

4. Erosion

Multi-phase, multi-material, ALE or mixed eulerian-lagrangean

2D cartesian, 2D cylindrical, 3D cartesian, Structured or unstructured grids

Project focus is on basalt, but both viscosity and solubility models extend to rhyolite.

H2O, CO2

Documentation in process. Should be available end of summer 2002

CpiuC

Giovanni Macedonio, Augusto Neri, Arnau Folch, Joan Marti.

1. Evolution of vent conditions.

2. Magma chamber/conduit coupling

3. Discharge dynamics

1. Magma chamber emptying

2. Conduit flow

3. Gas exsolution.

1 Homogeneous flow.

2. Steady-state conduit flow

3. Quasi steady-state magma chamber emptying

1. One-dimensional flow.

Any magma producing fragmentation

in the conditions adopted.

H2O

G.Macedonio A.Neri, A.Folch, J.Marti,

in preparation.

More refs...

PDAC2d

Augusto Neri, Tomaso Esposti Ongaro, Giovanni Macedonio, Dimitri Gidaspow, Amanda Clarke, Barry Voight.

1. Multiparticle dynamics of gas-pyroclast flows.

2. Dispersal dynamics.

3. Conduit dynamics (above fragmentation).

4. Vulcanian explosions.

1. Mechanical and thermal non-equilibrium processes.

2. Particle segregation, elutriation, sedimentation.

3. Gas-particle turbulence.

1.Transient flow.

2. Multiphase flow.

1. Two-dimensional flow (cartesian/axisymmetric).

Any gas-pyroclasts flow after fragmentation.

H2O+CO2+any other nonreacting gas.

A.Neri, T.Esposti Ongaro, G.Macedonio, D.Gidaspow, Submitted;

A.Clarke, B.Voight, A.Neri, G.Macedonio, Nature 2002.

More refs...

Bubbles

Vladimir Lyakhovsky,
Oded Navon,
Nadav Lensky

Bubble growth in viscous melt Bubble growth Viscous and diffusion control of growth Spherical Silicic H20 Lyakhovsky et al. 1996, Lensky et al. 2002
More refs...
Erupt Karl Mitchell,

Lionel Wilson

 1. Application to terrestrial and extra-terrestrial volcanoes
2. Coupling of conduit processes with plume models
3. Scaling between experimental and volcanic eruptions
4. Transition between explosive and effusive
 1. Bubble nucleation
2. Bubble growth and accumulation
3. Adiabatic thermodynamics
4. Supersonic compressible flow
5. Viscous flow dynamics
 Quasi-static and adiabatic (also quasi-isentropic jets)  1.5-D axially symmetric. Off-vertical ascent.  1.5-D axially symmetric. Off-vertical ascent. H2O, CO2 Parfitt, E.A. & Wilson, L. (1995) Geophys. J. Internat. 121, 226-232;
Wilson, L. (1999) Geophys. J. Internat. 136, 609-619.
More refs...

Kamchatka-steady

 

Oleg Melnik

Alexey Barmin

1. Discharge rate as a function of governing parameters

2. Transition between explosive and extrusive eruptions

1.Conduit flow

2. Fragmentation

3. Bubble growth

4. gas escape through the magma

Steady-state boundary value problem – calculates discharge rate for given chamber parameters and conduit length

 

Cylindrical conduit with constant cross-section area

Silicic high-viscous magmas

 

H20

Chapter of my doctoral thesis (in Russian)

More refs...

Kamchatka-transient

 

Oleg Melnik

Rob Mason

Alexey Barmin

Alexander Starostin (phreato-magmatic)

 

1. Discharge rate variation with time after plug disruption

2. Vulcanian explosions after dome collapce

1.Conduit flow

2. Fragmentation

3. Bubble growth

 

Transient 1D – calculates discharge rate variation after plug disruption

 

Cylindrical conduit with constant cross-section area

Silicic high-viscous magmas

 

H20

Chapter in Montserrat volume. + some papers in Russian

More refs...

Modified-MFIX

 

George Bergantz

Joe Dufek

Sebastian Dartevelle

To model transport, entrainment, heat transfer and sedimentation of multiphase mixtures at all solid volume fraction. Bubbles can be considered particles depending on capillary number.

1. Complete range of interphase momentum and scalar transfer and constitutive relations at all particle volume fractions.

2. Reaction.

 

Non-steady, Eulerian-Eulerian multifield theory, particle dispersal and gathering (but not Lagrangian particles), gas-particle turbulence.

3D Cartesian or cylindrical

Fluid properties can be variable

 

Gas properties can be variable

Bergantz G.W., and Ni G.Int. J. Multiphase Flow, 1999

More refs...

 

Workshop Parameter List

Parameter

People

How Measured

Range of Values

External Conditions

References

Rheology

Don Dingwell

Giordano

Hi T (and Hi P) experiments

1-10**12 Pa-s

Multicomponent liquids

GIORDANO & DINGWELL, 2002 EPSL

PVT equation of state

Don Dingwell

Gottsman

Courbal

Hi T experiments

 

Multicomponent liquids

Gottsmann and Dingwell 2002 (GCA)

Thermal history

Don Dingwell

Gottsmann

Nichols

Scanning calorimetery

 

Volcanic glasses

Wilding et all 2001

Vairuos other properties

Don Dingwell

Toplis

Bagdassarov

      More Dingwell refs...

More Bagdassarov refs...

Effect of bubbles on magma rheology (viscoelasticity)

 

 

Ed Llewellin, Heidy Mader, Simon Wilson

Lab experiments on aerated sugar syrup

Gas volume fraction 0 – 50%

Syrup viscosity = ~50 Pa s

Small deformations

Time dependent effects

Llewellin, Mader, Wilson. Proc Roy Soc 2002;
Llewellin, Mader, Wilson. GRL in press
More refs...

1. Eruption velocity as function of time

2. Estimate of ejected mass

3. Eruption duration

4. Eruption intervals

 

Ralf Seyfried,

Malte Vöge

Matthias Hort

FMCW Doppler radar

In situ measurements at Stromboli, Italy, and Mt. Merapi, Indonesia.

 

 

Eruption velocities up to 70 m/s

Eruption durations of up to 30 s

Real online filed experiment, natural conditions

Hort et al. 2002, Geophs. J. Int. submitted

Abstracts at AGU 2000 and 2001 by Seyfried, Voege and Hort

Hort and Seyfried, 1998 GRL,

Seyfried and Hort, 1999 Bull. Volc.

More refs...

Bubble nucleation, growth, and coalescence Jim Gardner

Jessica Larsen

Hydrothermal experiments Nucleation rates

Growth rates

Coalescence rates

P=0.1 to 200 MPa

T=700-900 C

X=rhyolite, 0.1-6 wt.% H2O

Earth Planet. Sci. Lett., 180, 201-214, 2000;
Geochim. Cosmos. Acta, 64, 1473-1483, 2000;
Earth Planet. Sci. Lett., 168, 201-218, 1999;
More refs...

H2O diffusivity in melt

 

Youxue Zhang, Harald Behrens, Ed. Stolper

Lab experiments and model

 

Rhyolitic melt, large range of T, P, H2O

Zhang and Behrens, 2000, EPSL

More Zhang refs...

H2O solubility in melt

Youxue Zhang, Yang Liu, F. Holtz, Harald Behrens

Lab experiments and model

 

Rhyolitic melt

Zhang, 1999, Rev. Gephys.

Liu and Zhang, in prep.

Other papers by Holtz and Behrens

Viscosity of melt

Youxue Zhang, Hejiu Hui, Don Dingwell, F. Holtz, Hess

Lab experiments and model

 

Hydrous rhyolitic melt

Hess and Dingwell, 1995, Am. Mineral.

Zhang, in prep.

Bubble growth data

Yang Liu, Youxue Zhang, Oded Navon, etc

Lab measurements and comparison with model

 

Hydrous rhyolitic melt, 450-570°C

Liu and Zhang, 2000, EPSL
More refs...

Fragmentation criterion

Youxue Zhang, Paul Papale

Theory for criterion

   

Zhang, 1999, Nature

Papale, 1999, Nature

1. Bubble nucleation

2. number density

3. Size distribution

Margaret Mangan High temperature & pressure experiments   Rhyolite and dacite melts;
900-1055oC;
25-200 MPa
Mangan & Sisson, 2000, EPSL;
Mangan & Sisson, 2001, EOS;
Mangan, Mastin, & Sisson, submitted, JVGR;

Surface tension of melt

         

 

Send mail to alex.proussevitch@unh.edu with questions or comments about this web site.
Last modified: Tuesday May 08, 2007