Model Name |
People |
General Goals and Intent |
Modeled Processes |
Dynamics |
Geometry |
Range of Compositions |
Volatiles |
References |
Bubbledrive-1 |
Alex Proussevitch, Dork Sahagian |
1. Full eruption cycle
2. Parameter feedback
3. Magma vesiculation
4. Discharge dynamics |
1. Bubble growth
2. Conduit flow
3. Foam fragmentation
4. Parameter feedback |
Non-steady state, triggers-(decompression; recharge from
below) |
Cylindrical and axi-symmetrical rotational bodies (e.g. vent
funnel, shallow magma chamber, connecting conduits) |
From basaltic to rhyolitic melts |
H2O |
Proussevitch, Sahagian, 1998, JGR
Sahagian, Proussevitch, AGU Abs., 2000& JGR
More refs... |
WK-1
|
Andy Woods
T. Koyaguchi |
Transition between explosive to effusive |
1. Effect of degassing from conduit |
Steady |
Cylindrical |
Basalt to dacite |
H2O |
Woods and Koyaguchi 1994 Nature
More refs...
|
YK-1
|
S. Yoshida
T. Koyaguchi |
Transition between explosive to effusive |
1. Effect of relative velocity
2. Introducing transitional flow regime between bubbly and
particle-disperse flows |
Steady |
Cylindrical |
Basalt to dacite |
H2O
w/o regorous exsolution law |
Yoshida and Koyaguchi 1999 JVGR
More refs... |
Conflow
|
Mastin, Larry G.
Ghiorso, Mark S. |
1. 1-D conduit properties
2. steady-state eruption dynamics
3. vesiculation processes
4. effects of rheology |
1. Bubble growth
2. Fragmentation
3. Adiabatic thermal effects
4. |
Steady-state |
1-D conduit, cylindrical or with geometry adjusted to a
given pressure profile. |
Full range (basaltic to rhyolitic) |
H2O |
Mastin and Ghiorso, 2000
Mastin, 2002
More refs... |
Degass
|
Matthias Hort
James Gardner |
1. Degassing of pumice fragments
2. constrain volatile content in matrix glass
3. parameter feedback |
1. Volatile degassing
2. Transport in an eruption column
|
1. Steady state eruption column model
2. Temperature and concentration dependent species diffusion
3. Dissoziation of H2O during diffusion |
1. 1D eruption column model
2. Spherical pumice
3. Sperical bubbles |
Higher silica, basaltic difficult due to low viscosity |
H2O |
Hort and Gardner JGR, 2000, 25981-26001
More Hort refs...
More Gardner refs... |
CFLOW
|
Hélène Massol,
Claude Jaupart |
1-Gas pressure field in the conduit (2-D) 2-Overpressure in
gas bubbles |
1-Compressible and viscous flow dynamics 2-(2-D): Height and
radius |
Steady state
Magma = homogeneous
Compressible mixture
|
Cylindrical and axi-symmetrical rotational bodies
Fully 2-D |
From andesitic to rhyolitic |
H20 |
Massol and Jaupart, 1999, EPSL; Massol,Jaupart and
Pepper,2001,JGR
More Massol refs...
More Jaupart refs... |
NUCLASCENT
|
Hélène Massol,
Takehiro Koyaguchi |
1-To couple the microscopic (bubble sizes and density) and
macro-scopic parameters (mass flux)
2-To progress in the under-standing of fragmentation
mechanism |
1-Bubble growth
2-Nucleation
3-Various Fragmentation criteria
4-Conduit flow |
Steady state
Gas pressure≠
Liquid Pressure ≠ Dynamic pressure
|
Cylindrical
1-D |
From andesitic to rhyolitic |
H20 |
Massol and Koyaguchi, 2001, EOS, Fall
Meeting Abstracts
More Massol refs...
More Koyaguchi refs... |
LBflow
|
Ed Llewellin, Heidy Mader |
3D flow of multiphase material (magma + bubbles +
crystals??) in arbitrary geometry |
1. Microscopic bubble deformation
2. Shear and timescale dependent viscosity
3. Macrosopic flow |
Steady and unsteady – driven by imposed pressure drop |
Arbitrary |
Arbitrary |
|
New model in preparation.
More refs... |
Conduit4
|
Paolo Papale |
Dynamics of magma ascent and fragmentation in explosive
eruptions |
1. Conduit flow
2. Gas-liquid chemical equilibrium
3. Dynamic criteria for foam fragmentation
4. Choking of multiphase mixture
5. Gas bubble entrapment in pumice
5. Parameter feedback |
Steady state, multiphase (gas/dense phase) non-equilibrium,
bubbly-flow and gas-particle/droplet flow regimes, composition-dependent
properties |
1-D conduits and fissures |
Any composition in terms of 10 major oxides, N crystal
species, and volatiles |
H2O, CO2, S (S2- and SO42-
in the melt, SO2 and H2S in the gas phase) |
1. Papale 1998, From Magma to Tephra – Elsevier;
2. Papale 1999,
Am. Mineral.;
3. Papale 1999, Nature;
4. Papale 2001, JGR. More
refs... |
ATHAM
|
Hans Graf
Michael Herzog
Christiane Textor
Joerg Trentmann |
evolution of high energy plumes (fire, volcanoes, convective
clouds) in the atmosphere
on the mesoscale ã |
1. turbulence closure scheme
2.microphysics of water and ice included, feedback on
dynamics considered
3.ash aggregation
4.gas chemistry
|
Non-steady state,
Non-hydrostatic,
Sound waves included |
Cylindrical=axi-symmetrical + cartesian in 2 and 3 dimensions
variable grid dimensions
focusing grid
open boundaries |
ATHAM is an Atmospheric model!
Composition of erupting mixture: arbitrary number of tracers
(solid, liquid, gaseous). |
H2O, SO2, H2S,
HCl, HBr, inert gas, CO2
Composition variable |
Oberhuber, J. M., M. Herzog, H.-F. Graf, and K. Schwanke
1998
Graf, H.-F., M. Herzog, J. M. Oberhuber, C. Textor 1999
Herzog, M., H.-F. Graf, Ch. Textor, and J. M. Oberhuber 1998
Textor, C., H.-F. Graf, M.Herzog, and J.M. Oberhuber
Textor, C., H.-F. Graf, M.Herzog, and J.M. Oberhuber
J. Trentmann and M. O. Andreae, H.-F. Graf, P. V. Hobbs, R.
D. Ottmar, T. Trautmann |
Magma-2D
|
J. I. Ramos |
1. Full eruption cycle
2. Melting of walls
3. Discharge dynamics
4. Magma solidification |
1. Conduit model
2. Magma solidification and remelting
3. Magma rheology
4. Solid-liquid mixtures
|
Unsteady/steady
Two-dimensional
Homogeneous flow
Mushy region
Binary materials |
Planar and axisymmetric conduits
Time-dependent or steady flows |
Basaltic and andesitic magmas.
|
|
Ramos, Acta Vulcanologica 1997.
Ramos, Int. J. Num. Meth. Fluids, 1995, 1999
More refs... |
CFDLIBv02.0 |
Ed Gaffney, Buck Kashiwa |
Magma interaction with underground structures at proposed
Yucca Mountain Nuclear Waste Repository |
1. Gas exsolution, phase separation,
2. Turbulent or laminar flow
3. Interaction with obstacles
4. Erosion |
Multi-phase, multi-material, ALE or mixed
eulerian-lagrangean |
2D cartesian, 2D cylindrical, 3D cartesian, Structured or
unstructured grids |
Project focus is on basalt, but both viscosity and
solubility models extend to rhyolite. |
H2O, CO2 |
Documentation in process. Should be available end of summer
2002 |
CpiuC |
Giovanni Macedonio, Augusto Neri, Arnau Folch, Joan Marti. |
1. Evolution of vent conditions.
2. Magma chamber/conduit coupling
3. Discharge dynamics |
1. Magma chamber emptying
2. Conduit flow
3. Gas exsolution. |
1 Homogeneous flow.
2. Steady-state conduit flow
3. Quasi steady-state magma chamber emptying |
1. One-dimensional flow. |
Any magma producing fragmentation
in the conditions adopted. |
H2O |
G.Macedonio A.Neri, A.Folch, J.Marti,
in preparation.
More refs... |
PDAC2d |
Augusto Neri, Tomaso Esposti Ongaro, Giovanni Macedonio,
Dimitri Gidaspow, Amanda Clarke, Barry Voight. |
1. Multiparticle dynamics of gas-pyroclast flows.
2. Dispersal dynamics.
3. Conduit dynamics (above fragmentation).
4. Vulcanian explosions. |
1. Mechanical and thermal non-equilibrium processes.
2. Particle segregation, elutriation, sedimentation.
3. Gas-particle turbulence. |
1.Transient flow.
2. Multiphase flow. |
1. Two-dimensional flow (cartesian/axisymmetric). |
Any gas-pyroclasts flow after fragmentation. |
H2O+CO2+any other nonreacting gas. |
A.Neri, T.Esposti Ongaro, G.Macedonio, D.Gidaspow, Submitted;
A.Clarke, B.Voight, A.Neri, G.Macedonio, Nature 2002.
More refs...
|
Bubbles |
Vladimir Lyakhovsky,
Oded Navon,
Nadav Lensky |
Bubble growth in viscous melt |
Bubble growth |
Viscous and diffusion control of growth |
Spherical |
Silicic |
H20 |
Lyakhovsky et al. 1996, Lensky et al. 2002
More refs... |
Erupt |
Karl Mitchell, Lionel Wilson |
1. Application to terrestrial and extra-terrestrial volcanoes
2. Coupling of conduit processes with plume models
3. Scaling between experimental and volcanic eruptions
4. Transition between explosive and effusive |
1. Bubble nucleation
2. Bubble growth and accumulation
3. Adiabatic thermodynamics
4. Supersonic compressible flow
5. Viscous flow dynamics |
Quasi-static and adiabatic (also quasi-isentropic jets) |
1.5-D axially symmetric. Off-vertical ascent. |
1.5-D axially symmetric. Off-vertical ascent. |
H2O, CO2 |
Parfitt, E.A. & Wilson, L. (1995) Geophys. J. Internat. 121, 226-232;
Wilson, L. (1999) Geophys. J. Internat. 136, 609-619.
More refs... |
Kamchatka-steady
|
Oleg Melnik
Alexey Barmin |
1. Discharge rate as a function of governing parameters
2. Transition between explosive and extrusive eruptions |
1.Conduit flow
2. Fragmentation
3. Bubble growth
4. gas escape through the magma |
Steady-state boundary value problem – calculates discharge
rate for given chamber parameters and conduit length
|
Cylindrical conduit with constant cross-section area |
Silicic high-viscous magmas
|
H20 |
Chapter of my doctoral thesis (in Russian)
More refs... |
Kamchatka-transient
|
Oleg Melnik
Rob Mason
Alexey Barmin
Alexander Starostin (phreato-magmatic)
|
1. Discharge rate variation with time after plug disruption
2. Vulcanian explosions after dome collapce |
1.Conduit flow
2. Fragmentation
3. Bubble growth
|
Transient 1D – calculates discharge rate variation after
plug disruption
|
Cylindrical conduit with constant cross-section area |
Silicic high-viscous magmas
|
H20 |
Chapter in Montserrat volume. + some papers in Russian
More refs... |
Modified-MFIX
|
George Bergantz
Joe Dufek
Sebastian Dartevelle
|
To model transport, entrainment, heat transfer and sedimentation of multiphase mixtures at all solid volume fraction.
Bubbles can be considered particles depending on capillary number.
|
1. Complete range of interphase momentum and scalar transfer and constitutive
relations at all particle volume fractions.
2. Reaction.
|
Non-steady, Eulerian-Eulerian multifield theory, particle dispersal and gathering
(but not Lagrangian particles), gas-particle turbulence.
|
3D Cartesian or cylindrical |
Fluid properties can be variable
|
Gas properties can be variable |
Bergantz G.W., and Ni G.Int. J. Multiphase Flow, 1999
More refs... |
Parameter |
People |
How Measured |
Range of Values |
External Conditions |
References |
Rheology |
Don Dingwell
Giordano |
Hi T (and Hi P) experiments |
1-10**12 Pa-s |
Multicomponent liquids |
GIORDANO & DINGWELL, 2002 EPSL |
PVT equation of state |
Don Dingwell
Gottsman
Courbal |
Hi T experiments |
|
Multicomponent liquids |
Gottsmann and Dingwell 2002 (GCA) |
Thermal history |
Don Dingwell
Gottsmann
Nichols |
Scanning calorimetery |
|
Volcanic glasses |
Wilding et all 2001 |
Vairuos other properties |
Don Dingwell
Toplis
Bagdassarov |
|
|
|
More Dingwell
refs... More Bagdassarov refs... |
Effect of bubbles on magma
rheology (viscoelasticity)
|
Ed Llewellin, Heidy Mader, Simon Wilson |
Lab experiments on aerated sugar syrup |
Gas volume fraction 0 – 50% |
Syrup viscosity = ~50 Pa s
Small deformations
Time dependent effects |
Llewellin, Mader, Wilson. Proc Roy Soc 2002;
Llewellin,
Mader, Wilson. GRL in press
More refs... |
1. Eruption velocity as function of
time
2. Estimate of ejected mass
3. Eruption duration
4. Eruption intervals
|
Ralf Seyfried,
Malte Vöge
Matthias Hort |
FMCW Doppler radar
In situ measurements at Stromboli, Italy, and Mt. Merapi,
Indonesia.
|
Eruption velocities up to 70 m/s
Eruption durations of up to 30 s |
Real online filed experiment, natural conditions |
Hort et al. 2002, Geophs. J. Int. submitted
Abstracts at AGU 2000 and 2001 by Seyfried, Voege and Hort
Hort and Seyfried, 1998 GRL,
Seyfried and Hort, 1999 Bull. Volc.
More refs... |
Bubble nucleation,
growth, and coalescence |
Jim Gardner Jessica Larsen |
Hydrothermal experiments |
Nucleation rates Growth rates
Coalescence rates |
P=0.1 to 200 MPa T=700-900 C
X=rhyolite, 0.1-6 wt.% H2O |
Earth Planet. Sci. Lett., 180, 201-214, 2000;
Geochim. Cosmos. Acta, 64, 1473-1483, 2000;
Earth Planet. Sci. Lett., 168, 201-218, 1999;
More refs... |
H2O diffusivity in melt
|
Youxue Zhang, Harald Behrens, Ed. Stolper |
Lab experiments and model |
|
Rhyolitic melt, large range of T, P, H2O |
Zhang and Behrens, 2000, EPSL
More Zhang refs... |
H2O solubility in melt |
Youxue Zhang, Yang Liu, F. Holtz, Harald Behrens |
Lab experiments and model |
|
Rhyolitic melt |
Zhang, 1999, Rev. Gephys.
Liu and Zhang, in prep.
Other papers by Holtz and Behrens |
Viscosity of melt |
Youxue Zhang, Hejiu Hui, Don Dingwell, F. Holtz, Hess |
Lab experiments and model |
|
Hydrous rhyolitic melt |
Hess and Dingwell, 1995, Am. Mineral.
Zhang, in prep. |
Bubble growth data |
Yang Liu, Youxue Zhang, Oded Navon, etc |
Lab measurements and comparison with model |
|
Hydrous rhyolitic melt, 450-570°C |
Liu and Zhang, 2000, EPSL
More refs... |
Fragmentation criterion |
Youxue Zhang, Paul Papale |
Theory for criterion |
|
|
Zhang, 1999, Nature
Papale, 1999, Nature |
1. Bubble nucleation 2.
number density 3. Size distribution |
Margaret Mangan |
High temperature & pressure experiments |
|
Rhyolite and dacite melts;
900-1055oC;
25-200 MPa |
Mangan & Sisson, 2000, EPSL;
Mangan & Sisson, 2001, EOS;
Mangan, Mastin, & Sisson, submitted, JVGR; |
Surface tension of melt |
|
|
|
|
|