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Abstract

Only two functions have been known to describe bubble and crystal size distributions which are exponential and power function. The previous studies addressed bubble size distributions on more qualitative than quantitative basis. Here we offer a strict analytical and computational approach to analyze observed bubble size distributions. This analytical approach has been used to study bubbles in basalts collected from Colorado Plateau (next paper).
Our new finds:

· We cleared a true meaning and confusion with definition of bubble number density (section “Spatial aspects of bubble size distributions”) that should be taken as ration of number of bubbles over solid phases volume.

· Bubble and crystal size distributions belong to logarithmic family of statistical distributions.

· We chose four distribution functions (log normal, logistic, Weibull, and exponential) from the large family of logarithmic family based on applicability to physical processes interpretation and ease of practical use.

· Power function that used to describe bubble sizes is not a statistical distribution. It is approximation of logistic distribution for large bubbles which sizes are considerably greater than its mode.

· Two ways to find distribution function (coefficient in each of the four above) could be used: a) function fit for exceedance of logarithmic distribution, and b). function fit for distribution density if the distribution transformed to linear type.
· We demonstrate that transformation of logarithmic distributions to linear type and using its probability density is the most robust way for function fitting and distribution visualization that facilitates its adequate physical interpretation. This method has many other advantages- a) it clearly visualizes bimodal distributions, b) allows obtain BND for each mode directly, c) in turn, knowing BND and distribution function, it could be integrated and total bubble volume fraction cold be calculated and compared to observed one (if available). In some cases, this method might provide more accurate results than actual measurements.
· Using exceedance makes more accurate results, but this has many limitations like a) need for rescaling support function, b) much less robust in function fitting, c) uncertainty in observed data error estimates, d) lack of visual perception, etc.
· Function fitting technique is outlined first time. We warn that function fitting provided by most of graphing software is not good to use since it minimizes distance between function line and observed points. The right fitting procedure must minimize this distance measured in observation error (sigma) units for each point. Thus, these observation data errors must be known.  We showed the way of how observation data error estimates should be calculated for both probability density (histograms) and exceedance.

1. Introduction

Previous studies show that many observed bubble and crystal size distributions could be described by exponential or power functions. This information combined with our own data (part 2 of this paper) indicates without any doubt that size distributions of bubbles and crystals in volcanic and magmatic rocks belong to statistical family of logarithmic distributions. In this paper we investigate the way of how source data (bubble distributions) should be properly treated.
Review of the previous studies here-
[Marsh, 1988 #2419] - A pioneer work that used physics of crystal nucleation and growth dynamics to derive analytical equation for crystal size distribution. An exponential distribution was predicted for single episode of simultaneous crystal nucleation and growth. Coefficients of this distribution functions were directly linked to nucleation and crystal growth rates. Later this classical equation was used and applied to many studies of bubble size distribution [Cashman, 1994 #3729; Cashman, 1994 #3346; Sarda, 1990 #2415; Blower, 2003 #6652].
[Toramaru, 1989 #1203] – Used his own analytical equations of bubble nucleation and bubble growth rates in the numerical simulations to find resulting BSD. He applied 8 different initial conditions (depth, decompression rate, initial water concentration, etc.) to see what the resulting BSD would be. His work is lacking any statistical interpretation of the results. He did not show what kind of distribution function match the results. Just from looking at the graphs (illustrations) I can visually see that these are logarithmic distributions.
[Toramaru, 1990 #1202] – applied his theoretical work [Toramaru, 1989 #1203] to about dozens of highly vesicular samples of natural volcanic rock ranging in composition from basalts to rhyolites. The goal was to recreate physical conditions and processed in the magma body that led to observed BSD(s). Again, statistical interpretations of the size distributions were not given in this work.
[Cashman, 1994 #3729; Cashman, 1994 #3346] - A failed attempt to apply crystal size distribution equation [Marsh, 1988 #2419] to BSD of Kilauea basalts. The problem was that only large bubbles were available for the analysis. The counted bubbles were much larger than their distribution modes. This was caused by limitation of analytical technique to count bubbles (photographs of rock cross-sections), and small bubbles could not be counted.
[Gaonac'h, 1996 #6677; Gaonac'h, 1996 #6653] - This work is a very through analysis of power law function that often fits distribution of large bubbles (which is only part of the whole range of bubble sizes). The authors missed the point that this is a special case of log logistic distribution that has been known by statisticians before [Cox, 1984 #7355]. Log logistic distribution function within full range of bubble sizes is analyzed in this work and applied to basalt samples in our next publication.
[Blower, 2001 #6599; Blower, 2003 #6652] - These works explored two previously known exponential [Marsh, 1988 #2419] and power law [Gaonac'h, 1996 #6677] functions that can describe all (exponential) or part (power) of BSD for interpretation of observed samples. The first one [Blower, 2001 #6599] was theoretical work that ran numerical models for single and multiple nucleation/growth events. They found that the variation of the coefficient of the power function could be interpreted by multiple nucleation events unlike the conclusion of [Gaonac'h, 1996 #6653] that interpreted the same thing by bubble coalescence. The second publication [Blower, 2003 #6652] applied the finding of the first one to some natural samples so that they could interpret BSD(s) in these samples as a result of single or multiple nucleation events.
As you can notice from this previous publications review, all authors published their papers in pairs where the first paper is theoretical analysis and the second one is application to natural samples. Here we follow this tradition and publish this study in two parts. This part is the theoretical study of statistical formulations for BND analysis.
A remark -

To characterize bubble sizes we use volumes instead of radius in formulations (equations) for analytical convenience and better physical relevance. But in descriptions in the text we use diameter for better visual perception.
Overview of the paper -

We start the paper (Section 2) from discussion of bubble number density (BND) that is one of the key parameter of bubble size distribution that relates to its spatial relation (aspect) with containing sample. We found it important to discuss it since this parameter is a part of every distribution density equation while a wrong perception of BND has pervaded volcanological literature. We argue that, similarly to crystal number density, BND is supposed to characterize integrated nucleation only. In order to have that, it is necessary to use melt or solid phases volume in its denominator instead of often mistakenly taken bulk sample volume.
Section 3 walks through basic statistical formulations where most of theoretical equations are paired with their practical forms used to build histograms and other statistical curves. While it might sound unnecessary we found that very often (actually almost always) these things are done wrong and statistically incorrect parameters are commonly plotted in bubble distribution literature. Besides, these formulations are used in this works for further analysis in the next sections. It is important to note that we introduce exceedance (or complimentary probability) first time to bubble distribution literature which could be very useful for practical analysis. As two main statistical parameters, distribution density and exceedance compliment each other in many ways. For instance, practical use of the exceedance does not involve binning of the original data therefore in totally excludes a human factor from the analysis, since binning always involves a human factor of choosing bin sizes. Advantages and disadvantages of both distribution density and exceedance are discussed in this section as well.
From many previous publications and our own data we conclude that bubbles in volcanic rocks (as well as crystals) belong to logarithmic family of statistical distributions. In the next section (4) we talk about this first time in geological literature. We focus on selection of appropriate distribution functions from the logarithmic family that currently counts more than 13 of them. Based on analytical benefits and applicability to natural bubbles and crystals we choose 4 of them for further analysis. Differences and specifics of these functions are discussed in this section.
Section 5 is probably the most critical in the whole paper. It addresses a problem of unit conversion that allows transforming logarithmic distributions to their linear forms. We demonstrate that the most common mistake and confusion is in unit substitution by rescaling abscissa to logarithmic scale. It causes loss and misinterpretation of bimodal and polimodal distributions. Linear form transformation is also very important for physical interpretation of distributions since they reveal and visualize actual modes and distribution moments that are not the same as false modes seeing on logarithmic distributions. We also demonstrate that most of false modes for bubble and crystal distributions are cutoff by bubble detection methods and that lead to miss-perception that there are no modes in bubble distributions and meaningless slope lines are commonly drawn.

In the Section 6 we apply linear transformation to the chosen four logarithmic distributions. This summarizes practical, analytical set of equations necessary for function fit analysis. The transformation of a logarithmic distribution to linear form might seem simple for natural logarithm, but in real live base 10 logarithms are always used, so in this paper we provided conversion coefficients of distribution moments for log 10 transformations (to our knowledge this is done first time for logarithmic distributions).
Next section (7) matches previously known and used bubble distribution functions with those we suggest in previous section (6). We criticize popular power law function been widely used in volcanic bubbles literature. We demonstrate that there could not be a distribution of this form, and it is actually an approximation of log logistic distribution in the range of far to the right from its mode (descending right hand side wing of the distribution).
Section 8 demonstrates (first time in volcanological literature) how statistical analysis of bubble distributions could be used to calculate other macro parameters of the sample such as void fraction. Void fraction very hard (if possible at all) to measure at the sample due to problem of large bubbles that could be very likely missed in small size samples [Gaonac'h, 1996 #6677]. So calculation can provide much more accurate results than direct measurements.
In the next section (9) we demonstrate function best fit analysis which is rarely done in volcanological studies of bubbles [Sarda, 1990 #2415] and never was done the way we suggest in this study. Commonly best fit understood as finding function coefficients that minimizes distance between the best fit curve and observation points to be fit. This is the only best fit choice in all graphing software packages we know. We argue that it is not statistically correct (or at least inaccurate) way to treat the analysis. The statistically correct way is to minimize distance measured not in the function units, but in observation error units which are different in each observation point. The only problem with that is a necessity to generate additional value for each point which is the observation error. This value is a measurement unit to minimize distance between the point and the fit curve. For distribution density (histogram) the error estimates are quite simple for count numbers in a bin, but for other statistical functions that generated from the count numbers an error propagation technique is required (see eq. 25). The error estimate for exceedance is much more complicated and cannot be accurate if partial range of object population is observed (that is always the case with volcanic bubbles). All these error estimate formulations are given in this section.
Last section (10) is conclusions.

2. Spatial aspects of bubble size distributions

Bubble number density is an important, fundamental characteristic of volcanic products (rocks) that is reported virtually in every paper that studies vesiculation, bubble nucleation and growth. But the way this parameter is calculated, understood and used is not consistent and often confusing. Here we want to clarify and define what bubble number density means.

Historically bubble number density (BND) is a parameter analogous to crystal number density (CND) being adopted for volcanological applications involving bubbles. Since CND is defined as number of crystals per unit bulk volume of rock, many researchers gave same definition to BND. We argue here that this definition of BND is fundamentally wrong and cannot be used in any contents.

CND is a parameter that characterizes integral crystal nucleation. As soon as group or crystals or all of them get nucleated then their CND never changes after that. Crystals grow, change size but their CND stays the same, and therefore it solely characterizes nucleation part of crystal generations. Why CND does not change during crystal growth – because partial molar volumes of mineral components in the melt (or other crystals in case of peritectics) and in the crystals are very close to each other. In other words during their growth crystals gain same volume of bulk material as melt looses, and the bulk volume of material almost does not change as crystals grow or dissolve. Of course, traditionally CND was meant only for bubble free systems, so that bulk volume of sample is same as volume of melt/solids.

In order to have BND to be a parameter of integral bubble nucleation similarly to CND bulk sample volume cannot be used as a denominator because partial molar volume of dissolved gas in the melt is much smaller than those in the gas that make bubbles. In other words if number of bubbles in the system does not change but they are growing (changing their size) then the sample bulk volume changes as well. Volume of melt/solids must be used as a denominator in BND definition (see Box 1). The confusion of using bulk sample density for BND can lead to ridiculously obscure situations… like those BNDs for polydispersal systems are meaningless.
Box 1. Differences in definition of crystal and bubble number density
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	In order CND/BND to be a parameter that characterizes integral nucleation they must be independent of crystal/bubble growth history. Therefore, denominator in its definition must stay constant as crystals/bubbles may change their size due to growth or dissolution. Actually Vbulk in CND definition is the same as Vmelt/solids in BND definition since traditionally CND is always meant for bubble free substances.


3. Basic statistical formulations used for analysis
All basic formulations below are basic statistical formulations applied to practical technical analysis which is rarely done correctly in actual practice and research. Below we use bubble volume (V) instead of usual variable (x) to make abstract statistics to be better applied and understood in practical analysis of bubble populations.

Distribution density (histogram). It is the simplest and most basic step in statistical analysis known as binning of observation data
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(Practical form)
(2)

where V is bubble volume, n is number of bubbles, ni is bubble count in a bin of V size, V is histogram bin size. It is important to note that eq. (2) refers not to a simple histogram where number of counts is plotted on abscissa coordinate- it refers to normalized histogram where abscissa has actual distribution density as number of counts in each bin divided by bin size. It makes a fundamental difference since reasonable changing of bin size does not change plotted distribution density.
Probability density (normalized histogram). It is one of the most fundamental statistical parameter that is readily available from distribution histogram by dividing distribution density by the total number of observed objects (bubbles).
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where ntotal is bubble population count which in analytical form is 
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 over full range of volumes yield one. While probability density sounds as a good way to go in the practical analysis it might be very misleading if range of observed bubble sizes does not reflect actual range of bubble sizes, say, because instruments cannot detect small bubbles or sample sizes is too small to detect large bubbles, etc. In other words we never know whether we missed small and/or large bubbles in our observations. If any of these are missed then we do not know the total number of bubbles in the population, and, therefore, ntotal (eq. 4) is inaccurate or totally wrong.
Bubble number density (BND). Surprisingly this parameter binds together distribution and probability densities. Since BND is total number of bubbles in unit volume of melt/solids (Vm) then
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Therefore,
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(6)
The difference between N0 and BND in regard to distribution density is that the first one is intensive parameter that depends on sample size while second one is same but normalized to melt volume (extensive parameter).
Local (bin sized) bubble number density. Dividing distribution density by melt volume makes extensive analogue of distribution density that we found very useful earlier. Improving it by this normalization we could be able to compare analysis results of samples of different sizes
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As it follows from (7), N(V) could be interpreted as local bubble number density. Consequently, it terms of practical form of analysis it is “bin sized” number density -
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Exceedance. It is also known as survival function [Connor, 2003 #7050]. It could be also interpreted as complimentary probability function. Strange enough this statistical parameter has been used in recent studies of volcanic bubbles [Gaonac'h, 1996 #6677; Blower, 2001 #6599], but authors did not give it explicit name. In these publications non-normalized exceedance was referred as 
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. Exceedance is a fraction of observed objects (bubbles) with the size larger than V. Thus, we define it as
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where i is an index of bubble with volume V within ascend sorted bubbles. We avoid using non-normalized exceedance as it does not have a statistical meaning. Exceedance is widely used in practical statistical analysis primarily because it does not involve histogram binning and a researcher does not need to choose bin size and binning space. Exceedance curves are usually smooth, distinctive, could be build over wider range of observed values (no problem with a situation when there are zero objects in a single bin.), and therefore have an advantage in distribution function fitting (with some restrictions as we discuss later). Practical calculation of exceedance is prone to the same problem as probability density in regard of ntotal which is never accurate that is why we use apostrophe at its notation. But unlike in case of probability density this problem could be easily bypassed for exceedance. Since small and large objects (bubbles) are not detected in the resulting population then we can write relation between “true” S(V) and “observed” exceedance S’(V) as simple rescaling relation 
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where S’ is “observed” exceedance, and S is “true” exceedance we intend to find with best fit function. Equation (11) must be always used for distribution function fitting (discussed below).
Summary of basic statistical formulations is given in Box 2. The above formulations address the problem of initial data processing making it ready for next step to find an analytical distribution function that fits the observed data the best. Since distribution densities is the most common way to pre-process observation data in form of histograms therefore theoretical distribution functions are commonly given in form of probability density. Here we should warn that normalized histograms (4) must be avoided for that and distribution density (2) or “bin sized” number density histograms should be used instead. Exceedance curves is another good way to present observation data in order to fit it to known theoretical distribution function, but caution must be paid to its limitation due to unknown size cutoffs for small and large bubbles.
Box 2. Good and bad practices in basic statistical analysis of bubble populations.

	Action
	Bad Practices
	Good Practices

	Distribution Histogram
	It is not good to use number of counts in each bin since number of counts depends on bin size. Also number of counts in a bin has no statistical meaning
	Use distribution density instead. Divide number of counts in each bin by bin size (see eq. 2)

	Normalized Histogram
	Avoid using since total number of objects (bubbles) is never known (see eq. 4)
	Use histograms of “bin sized” number densities. An advantage is that it does not depend on sample size (see eq. 8)

	Exceedance
	It is not good to use non-normalized exceedance since it does not have statistical meaning and different samples cannot be compared
	Exceedance must be normalized (see eq. 10)


4. Logarithmic family of continuous distribution functions
Previous studies of bubble populations in volcanic rocks clearly indicate that bubbles belong to logarithmic family of distributions. In general logarithmic distributions can easily distinguished by following three features –

1. Range of values between small and large objects in the population covers many orders of magnitude (at least 6 orders of magnitude for volcanic bubbles we have analyzed).
2. Probability density varies also within many orders of magnitude between small and large bubbles (about 4 orders of magnitude for volcanic bubbles we have analyzed). That causes exceedance curve always to have exponential shape.

3. Probability density only increases as size of objects gets smaller. In other words you always observe increasing number of objects as they get smaller.

Good examples of other natural objects (besides bubbles) that belong to logarithmic family of distributions are crystals in magmatic rocks, river basin sizes, pieces of land surrounded by water on Earth, star brightness, city/town population etc.
While family of known continuous analytical functions counts at least 13 of them (Cox and Oakes, 1984, page 17) only one of them has been tested in application to bubbles before. Most of these 13 functions are very specialized. Some of them do not have analytical form for both exceedance and density and thus cannot be readily tested in fitting observed bubble populations. Some have more than 3 coefficients that make them difficult to fit to observed data, and these coefficients could not be physically interpreted. We have selected and used four most common and suitable distribution functions of the logarithmic family listed in Box 3.

Box 3. List of distribution functions from the family of continuous logarithmic distributions that were applied in this study for bubble populations.

	Distribution
	Notes
	Used before

	Log Normal
	This is most obvious choice since it is most common distribution
	None

	Log Logistic
	Some close to Log Normal but adds versatility in asymmetry and skewness
	Asymptotes only [Gaonac'h, 1996 #6677]

	Weibull
	Highly asymmetric
	None

	Exponential
	Special case of Weibull distribution (this is shown first time in this work)
	Yes, based on [Marsh, 1988 #2419]


It worth to mention, that we did not include in Box 3 one probably the most useful logarithmic function known as Gamma distribution.
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where k>0 is a gamma function index, k is mean and k-1/2 is variation. Gamma distribution is analytically given only in form of distribution density that cannot be explicitly integrated for exceedance or converted to linear scale except for few special cases when k takes small (1 or 2) integer values. Most of integration and differentiation operations could be done numerically only. Due to these reasons we left it behind not investigated for bubble populations.
5. Transformation of logarithmic distributions to linear forms

While logarithmic distributions can very accurately match and describe object (bubbles) populations they have certain problems in interpretation and visualization. Statistical and physical meaning of their coefficients and moment are not clear, they cannot be easily paralleled with physical processes that generated those distributions. Since distribution density of logarithmic functions smoothly and continuously decrease with size of objects (bubbles), it is impossible explicitly define multimodal distributions or visualize the modes, asymmetry features, etc. Again, since logarithmic functions are smooth and continuously decreasing function matching techniques are not so robust in catching details, multiple modes, small features, etc.
We suggest transforming observed objects (bubbles) to logarithmic scale and treat them with linear analog of logarithmic distribution. Only this treatment can bring up and visualize all hidden features of logarithmic distributions. In order to do that action with observed data is very simple- all object measurements should be converted to their logarithm. In case of bubbles all units becomes logarithm of volume.

Transformation of distribution density from logarithmic type to linear type cannot by done just by substitution of the dimension variable (t) to its logarithm (log t).
Rescaling of logarithmic distribution functions to linear distributions involves similar variable substitution. Let us do it for distribution density as the most common function that presents distribution. Since
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substitution of x=log(t) lead to following distribution density relations between logarithmic (originally linear) t scale and linear (logarithm of original) x scale
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where superscripts “lin” and “log” refers to linear and corresponding logarithmic distribution. If we illustrate that transformation for classical normal distribution in linear scale
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then its logarithmic analog known as log normal distribution density follows after substitution of (16) into (14)
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where coefficients between (16) and (9b) relate as 
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What we just have done could be translated in plain words as if we have bubble size (volume) distribution to be perfect log normal distribution (17), we would not be able easily see its features and interpret them (coefficients k and ) with some physical meaning. The distribution density (histogram) would look like monotonically declining exponential curve that quickly shoots to high values at low volumes and drops very low as volume increases. If you do binning then bins on the left get quickly overfilled while bins in the left stay mostly empty. Exceedance curve does not do much help either. The miracle happens if you take logarithm of volume for every bubble and re-plot the results in the scale from negative to some positive t(s), and, of course, bin sizes are constant in log units. You’ll see perfect bell shaped distribution density curve with mean (v) and sigma () well visualized.
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Figure A. Illustration with hypothetical distributions.

a). Normal distribution with arbitrary chosen location (v=2) and sigma (=0.5);

b). Same distribution as log normal (units relate as
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 which corresponds to x=1.42. As sigma increases the differences between normal and log normal modes becomes larger.
c). Meaningless changing of t-axis scale of (b) to its logarithm makes Gaussian curve (normal distribution). Its moment have no statistical or physical meaning (see discussion of (b). Anyway, with substitution 
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 its function becomes Gaussian curve of this form 
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 where v’ and v” are real numbers.
d). Bimodal normal distribution with arbitrary parameters noted on the figure.

e). Same bimodal distribution in log normal form. While second mode exists it is not visually visible.
f). Changing t-axis to log scale still cannot visually show the second mode.
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Figure AA. Real life examples for graphs of Figure A are shown here so that all a-f graphs correspond to each other. Here we illustrate BSD converted to linear distributions by changing unit scale (graphs in first column). Graphs in second column are logarithmic distributions with unchanged units. Graphs in third column are same is in second but using logarithmic abscissa scale. Top row is normal monomodal distribution. Second row is normal bimodal distribution. Samples 32b and 31t are used for the illustration (Colorado Plateau basalts collection processed by high resolution CXT and object recognition software [Proussevitch, 2001 #5800]). Voxel size is 47 microns.
Example with bimodal distribution underline an importance of correct treatment of log normal and other logarithmic distributions in order of their correct statistical and (later) physical interpretation.
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Figure B. Top row is the same as on Figure A. Second row shows exceedance for the same distribution. Since exceedance does not involve any derivatives of original probability (it is actually reverse probability) changing t-axis to logarithmic scale is a legitimate way to use unit conversion unlike it was the case of distribution density.
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Figure C. Top row is the same as on Figure A for bimodal distribution. Second row shows exceedance for the same distribution. Small wiggles on the exceedance curve caused by the bimodal nature of the distributions are hard to see visually and those could be easily veiled by real data scatter and so might be easily missed in real life analysis. Also function fit analysis can not be robust and accurate on the smooth functions as exceedance compared to distinctive ones as probability density.
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Figure D. Commonly used double logarithm scaling of exceedance curve in bubble size analysis that actually completely hides distribution features and allows to focus only on the large size tail of the distribution. This is very common systematic misinterpretation in the analysis.
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Figure E. Disadvantages of using exceedance for real life applications. In real life analysis small objects of log normal distributions are rarely detected as well as some large objects. So shaded area shows where observation range is. In the observation area the smallest object gets observation exceedance S’=1 and the largest one gets S’=0 while those values correspond to S=0.85 and S=0.05 accordingly. Rescaling S’ using eq. (6) can salvage exceedance function fitting, but lack of sufficient characteristic points on the curve makes the fitting procedure to fail or yield large uncertainties. Function fitting of distribution density does not need any rescaling, has a lot of good characteristic point and so is always robust and accurate.
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	Figure F. Real life example to illustrate partial range of the observed bubble sizes (Sample # 21t, collection of Colorado Plateau basalts processed by high resolution CXT and object recognition software [Proussevitch, 2001 #5800]. Voxel size is 47 microns.). This is bimodal log logistic distribution shown as local number density histogram on the top and exceedance on the bottom graph. The unit on both graphs has been rescaled to base 10 logarithms and linear distribution equations (Table 1) has been used to find best fit distribution curves. On the density histogram you can clearly see two modes. While the large size mode is represented on its full range, the smaller mode is cut off so that about 30 % of bubbles are not observed and presented in the collected data (due to limits of the method resolution). That is reflected in the exceedance curve scaling using eq. (11) as a data missing for small bubbles. Also pay attention that second mode is not visualized on the exceedance graph and could be easily missed.


6. Analytical forms of used logarithmic distributions
Now we know logarithmic to linear transformation principles, so we can present Table 1 of distribution equations mentioned in Box 3 that have been used in work with bubbles.

Table 1 here
We have produced using relations (14-15) logarithmic forms from linear normal distribution. We have used both forms of logistic distribution from [Cox, 1984 #7355]. And we produced linear from logarithmic ones for Weibull and exponential distributions.
Equations in Table 1 are essential for real life logarithmic distribution application because these have been used (below) to fit observation data (bubble populations). We also found convenient to use Log10 transformation of bubble volumes instead of taking natural logarithm due to easier “mental” backward conversion of produced results. Taking Log10 produces exact same linear distribution equations (Table 1) but relation between coefficients change. These are given in coefficient conversion columns of the Table 1 for convenience.
7. Distribution functions used to analyze bubbles in volcanic rocks in previous publications
Exponential distribution [Marsh, 1988 #2419]. This is the only one logarithmic distribution function that has been used to analyze bubble size distributions before (refs). Only its logarithmic form were present (first column in Table 1) but no one attempted to interpret free coefficient in front of the exponent as the one related to bubble number density (BND) (see notes # 2-3 for Table 1 or eq. (6)). Comparison of exponential distribution with Weibull distribution (see Table 1) clearly indicates that the first one is a special case of more general and therefore useful Weibull distribution. The special case is when sigma becomes equal to 1, so reducing number of match coefficients (parameters) to just two.
Log logistic distribution. Although this one has never been used in the bubble size analysis, its asymptotic case for large bubbles has been investigated [Gaonac'h, 1996 #6677; Gaonac'h, 1996 #6653]. It does not seem that authors have actually realized that they deal with log logistic distribution otherwise they could have easily see that their data, say, presented on Figure 6 of [Gaonac'h, 1996 #6653] would perfectly fit to log logistic distribution within the whole range of bubble sizes. Instead they found that for large bubbles (make 
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 in log logistic distribution in Table 1) data fit to power relation
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where B is empirical exponent.
Of course, power function of this form can never be a distribution function since integration of (18) makes infinity (cannot make integration of probability density equal to one!). Nevertheless, if someone takes 
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 for the log logistic distribution (Table 1), then it transforms to power equations (18-19). Gaonac'h with coauthors suggested that B≈0 for bubble populations produced by diffusive regime of growth, and B≈1 for coalescence regime of bubble growth. Later it was suggested that high B could be caused by multiple nucleation events and bubble growth combined [Blower, 2001 #6599]. Results of our studies presented in the second paper in general agree with both alternatives.
Log normal distribution. This distribution was ones used in work [Sarda, 1990 #2415] to interpret bubble size distributions in deep water ocean ridge basalts, but density histogram had only data of 7 points (bins), so that reliability of their function fit is very questionable. Possibility of log normal distributions for bubbles in lava bombs of basaltic composition has been suggested in work [Shin, in press #7359]. But no systematic study of this distribution has been performed yet (also in both sited works).
8. Vesicularity of the known distributions
If a distribution function is known, it immediately benefits in calculating sample vesicularity. It is very important practical application of the statistical analysis of bubble distributions since measuring void fraction of the samples directly can never assure that some large bubbles are actually captured (included) in the sample especially in the case of relatively small samples.

Total volume of bubbles Vg can be calculated directly from local bubble number density N(V) or probability density f(V) as
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Vesicularity  of a sample then comes from volume of bubbles Vg and melt Vm as following
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Unfortunately volume integration of exponential distribution has analytical solution only


[image: image62.wmf]m

ˆ

´

=

BND

V

g


(22)

while others (normal, logistic and Weibull) must be integrated numerically using Romberg schemes for improper integrals [Press, 1992 #7358].
It is very important to have a clear idea about the rate of how fast large bubbles diminish in the samples that directly affects on how large sample size should be for direct measurement of vesicularity and what is the size of largest viably visible bubbles in the rock. The results are present in Box 4.

Box 4. Largest viable objects (bubbles) of logarithmic distributions

	Distribution
	Descent rate within exponent
	Reference distribution*
	Radius of largest bubble**
	Notes

	Normal
	x2
	v = 0.5 mm
 = 0.05 mm
 = 16.4 %
	4.26 mm
	Fast descent rate. Largest bubbles have size comparable to modal sizes.

	Logistic
	x
	v = 0.5 mm
 = 0.04 mm
 = 48.4 %
	>> 1 m
	Very slow descent rate. Largest bubbles are huge causing total vesicularity to be much higher than that observed in handable samples.

	Weibull
	exp(x)
	v = 0.5 mm
 = 0.05 mm
 = 7.09 %
	1.52 mm
	Very fast descent rate. Largest bubbles have almost same size as modal bubbles.

	Exponential
	exp(x)
	v = 0.5 mm
 = 0.06 mm
 = 11.0 %
	2.40 mm
	Very fast descent rate. Same as Weibull.


*
Reference distributions are chosen to be typical for Colorado Plateau basalts. v is modal radius,  is sigma, and BND of 108 is the same for all distributions.

**
The largest bubble size is taken as radius of bubble for upper limit to integrate (20) that yields 99% of total vesicularity.
The distribution descent rate is critical in defining a sample size to be representative in studying vesicularity if all largest bubbles are meant to be caught in the sample. As you can see from Box 4, fairly small samples could be fine to study vesicularity of basalts if Weibull or exponential distribution is known in those. Samples with normal distribution should be taken medium sized (about 10 cm cubes). Logistic distributions have very rare, but so large bubbles affecting total vesicularity that none of the viable sized samples can not contain those. The possibility of such distribution behavior has been discussed in detail [Gaonac'h, 1996 #6677].
9. Function best fit analysis
In order to fit observed bubble populations to known distribution functions we have used chi-square function minimization. The quantity of chi-square is to be minimized
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where N is a number of observation points (xi,yi) with known errors i (standard deviations) at each point, y(x) is the function to fit that has its own coefficients a1…aM, and v is number of degrees of freedom The point of best fit analysis is to find such a combination of given function coefficients a1…aM so that the χ2 is minimal. We have used an algorithm developed by Dr. Tsentalovich to do the job that is based of function minimization routine “amoeba” from Numerical Recipes [Press, 1992 #7358]. As it was noted above, this method requires knowledge of errors at each observation point, and the best estimate for the error is square root of counts in each bin if number of counts is not just few counts (
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). For small number of counts it should be taken as the number of counts instead of square root, and if there are no counts (ni=0) it must be equal to 1. Using error propagation equation the error for each observation point is
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Thus, for a function to fit local number density (equation 8) it is
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Error of exceedance function fit should be taken differently. If we write exceedance function if form
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where 
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, and n0 is total number of bubbles. Then
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Since
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we have
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We should note that equation (32) applicable for “true” range exceedance curve S and not for “observed” S’ (see equation 11) that we usually deal with. Since we never know in advance of how much bubble size range is truncated in the observations we must exclude first and last few points from the calculations where the sigma gets very small value. If those are used then it can lead to false high chi-square values, if considerable portion of “true” bubble population at the edges is not included in the observed part. This is the best guess of sigma for exceedance S’ that we can make.
10. Conclusions
Overall procedure of sample analysis of logarithmic distributions is given on the flowchart below. Analysis could be done for (best) linear probability density and/or logarithmic exceedance (see two branches on the flowchart). It is virtually impossible or someone can get very poor results trying to run analysis for logarithmic probability density (original data), because of the problems with data binning.
Doing log exceedance analysis can yield good reliable results only in case of full range of “true” object sizes to be actually captured within observed population. Even for those cases detection of bimodal distributions is often failing because of the exceedance curve smoothness. Another disadvantage is lack of spatial parameters such as bubble number density that do not follow directly from exceedance. Cumulative bubble volume cannot be calculated from exceedance as well. Some advantage of exceedance analysis is that it does not involve data binning, and so results are sort of more “human error” free (a researcher still has to choose bin size arbitrary).

Linear probability density is the most productive and insightful approach of logarithmic distribution analysis. We start from cons points which is the only one – binning. We found that any reasonable binning from few dozens to few hundred bins yield good results and resulting fit functions are very close. Remember that bins are normalized and as long as function line going through the bin interval looks straight everywhere then the bin size is appropriate (acceptable).
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Figure 1. Flowchart of bubble size distribution analysis.

Table 1. Logarithmic family of distribution functions that could be used to describe bubble size distributions.
	Logarithmic Distribution
	Linear Distribution
	Coefficient Conversions

	Probability Density
	Exceedance
	Probability Density
	Natural Log Scale
	Base 10 Log Scale

	Normal
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	Exponential
(It is special case of Weibull at  = 1)
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	Use Weibull at 
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Notations: f – distribution density; 
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 - probability density; S – exceedance;  - mean; 
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 - median;  - sigma; N0 – nucleation density; L10 = Ln(10);

Note # 1:
Distribution are given in order of their significance

Note # 2:
Distribution and probability densities relate as 
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Note # 3:
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Build local number density histogram:


Use Log10 scaled bins


Normalize counts by bin size and containing melt volume





Convert volume of each bubble to Log10





Original bubble population data (Volume of each bubble)





Create exceedance data by sorting volumes, indexing and normalizing indices (eq. 5b). Result is volume exceedance pairs.





Calculate error (sigma) for each bin using error propagation function (eq. 21)





Run best fit using function minimization “amoeba” for all linear probability density functions (normal, logistic, Weibull, and exponential) from Table 1, column 3. Use bimodal function (eq. ?) if you see two modes on the histogram. Choose which function fits the best (smallest chi-square).





Calculate error (sigma) for each data pair using exceedance error function (eq. 24). Do not include few first and last points.





Run function fit using function minimization “amoeba” for all logarithmic exceedance functions (normal, logistic, Weibull, and exponential) from Table 1, column 2 in combination with eq. (6). Use bimodal function (eq. ?) if you did it so for the box on the left. Choose which function fits the best (smallest chi-square).





Distribution Density Branch





Exceedance Branch





Compare distribution function coefficients from both branches using coefficient conversions given in Table 1, column 5. They should be close or matching. If they do not match, trust to Density Branch (see discussions).





Calculate void fraction in the sample using numerical integration (eqs. 14-15)
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